From 1 - 10 / 23
  • The National Geochemical Survey of Australia (NGSA) provides an internally consistent, state-of-the-art, continental-scale geochemical dataset that can be used to assess areas of Australia more elevated in commodity metals and/or pathfinder elements than others. But do regions elevated in such elements correspond to known mineralized provinces, and what is the best method for detecting and thus potentially predicting those? Here, using base metal associations as an example, I compare a trivariate rank-based index and a multivariate-based Principal Component Analysis method. The analysis suggests that the simpler rank-based index better discriminates catchments endowed with known base metal mineralization from barren ones and could be used as a first-pass prospectivity tool. <b>Citation:</b> Patrice de Caritat, Continental-scale geochemical surveys and mineral prospectivity: Comparison of a trivariate and a multivariate approach, <i>Journal of Geochemical Exploration</i>, Volume 188, 2018, Pages 87-94, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2018.01.014

  • It is increasingly recognised that, to maintain a sustainable pipeline of mineral resources in Australia, future discoveries will need to be made in areas obscured by more recent cover sequences. A major challenge to mineral exploration in covered frontiers is identifying new prospective fairways, and understanding and mapping important metallogenic processes at a range of scales to enable more effective targeting of exploration. Here, we present evidence for a completely buried corridor of interpreted high prospectivity—the East Tennant region—based on synthesis and integration of a diverse range of geoscientific datasets. Key indicators of the region’s potential include lithospheric-scale architecture, elevated electrical conductivity in the crust and mantle, and modelled and demonstrated hydrothermal alteration in the near surface. Multiscale geophysical surveys show evidence for crustal-scale fluid flow along major structures, connecting the mantle with the surface. Although few geological constraints exist in this region, examination of legacy drillcore and geochronology results demonstrates a similar history to rocks known to host mineralisation across the North Australian Craton. These results provide tantalising indications that the under-explored East Tennant region has significant potential to host major mineral systems. <b>Citation: </b>Schofield, A., Clark, A., Doublier, M.P., Murr, J., Skirrow, R., Goodwin, J., Cross, A. J., Pitt, L., Duan, J., Jiang, W., Wynne, P., O’Rourke, A., Czarnota, K., and I. C. Roach., 2020. Data integration for greenfields exploration: an example from the East Tennant region, Northern Territory. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset. The present report presents additional mineralogical data acquired as part of the Heavy Mineral Map of Australia (HMMA) project on the NGSA samples, covering ~81% of Australia. The HMMA project, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (EFTF) program.</div><div>All of the 1315 NGSA bottom catchment outlet sediment samples, taken on average from 60 to 80 cm depth in floodplain landforms, were used in the HMMA project. The samples were dried and sieved to a 75-425 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity > 2.9 g/cm3) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified 163 unique phases (including ‘Unclassified”) in the NGSA sample set. The dataset, consisting of over 145 million individual mineral grains, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using a free online, bespoke mineral network analysis (MNA) tool built on a cloud-based platform. Preliminary analysis suggests that zinc minerals and native elements&nbsp;(e.g., native gold and platinum) may be useful in mineral exploration applications. Detailed interpretations of the HMMA dataset will be provided elsewhere. Accompanying this report are data files of TIMA results, a minerals property file, and an atlas of HM distribution maps. </div><div>It is hoped the comprehensive dataset generated by the HMMA project will be of use to mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.</div>

  • The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset (<a href="http://dx.doi.org/10.11636/Record.2011.020">http://dx.doi.org/10.11636/Record.2011.020</a>). The present dataset provides additional geochemical data for Li, Be, Cs, and Rb acquired as part of the Australian Government-funded Exploring for the Future (EFTF) program and in support of the Australian Government’s 2023-2030 Critical Minerals Strategy. The dataset fills a knowledge gap about Li distribution in Australia over areas dominated by transported regolith. The main ‘total’ element analysis method deployed for NGSA was based on making a fused bead using lithium-borate flux for XRF then ICP-MS analysis. Consequently, the samples could not be meaningfully analysed for Li. All 1315 NGSA milled coarse-fraction (<2 mm) top (“TOS”) catchment outlet sediment samples, taken from 0 to 10 cm depth in floodplain landforms, were analysed in the current project following the digestion method that provides near-total concentrations of Li, Be, Cs, and Rb. The samples were analysed by the commercial laboratory analysis service provider Bureau Veritas in Perth using low-level mixed acid (a mixture of nitric, perchloric and hydrofluoric acids) digestion with elements determined by ICP-MS (Bureau Veritas methods MA110 and MA112). The data are reported in the same format as the NGSA dataset, allowing for seamless integration with previously released NGSA data. Further details on the QA/QC procedures as well as data interpretation will be reported elsewhere. This data release also includes four continental-scale geochemical maps for Li, Be, Cs, and Rb built from these analytical data. This dataset, in conjunction with previous data published by NGSA, will be of use to mineral exploration and prospectivity modelling around Australia by providing geochemical baselines for Li, Be, Cs, and Rb, as well as identifying regions of anomalism. Additionally, these data also have relevance to other applications in earth and environmental sciences.

  • <div>The Proterozoic alkaline and related igneous rocks of Australia is a surface geology compilation of alkaline and related igneous rocks of Proterozoic age in Australia. This dataset is one of five datasets, with compilations for Archean, Paleozoic, Mesozoic and Cenozoic alkaline and related igneous rocks already released.</div><div><br></div><div>Geological units are represented as polygon and point geometries and, are attributed with information that includes, but is not limited to, stratigraphic nomenclature and hierarchy, age, lithology, composition, proportion of alkaline rocks, body morphology, unit expression, emplacement type, presence of mantle xenoliths and diamonds, and primary data source. Source data for the geological unit polygons provided in Data Quality LINEAGE. Geological units are grouped into informal geographic “alkaline provinces”, which are represented as polygon geometries, and attributed with information similar to that provided for the geological units.</div>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Proterozoic age. Proterozoic alkaline and related rocks are primarily restricted to the western two-thirds of the Australia continent, congruent with the distribution of Proterozoic rocks more generally. Proterozoic alkaline rock units are most abundant in Western Australia and the Northern Territory, with minor occurrences in South Australia, and the western regions of Queensland, New South Wales and Tasmania.</div><div><br></div><div>The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g., extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.&nbsp;</div>

  • <div>The Heavy Mineral Map of Australia (HMMA) project1, part of Geoscience Australia’s Exploring for the Future program, determined the abundance and distribution of heavy minerals (HMs; specific gravity >2.9 g/cm3) in 1315 floodplain sediment samples obtained from Geoscience Australia’s National Geochemical Survey of Australia (NGSA) project2. Archived NGSA samples from floodplain landforms were sub-sampled with the 75-430 µm fraction subjected to dense media separation and automated mineralogy assay using a TESCAN Integrated Mineral Analysis (TIMA) instrument at Curtin University.</div><div><br></div><div>Interpretation of the massive number of mineral observations generated during the project (~150&nbsp;million mineral observations; 166 unique mineral species) required the development of a novel workflow to allow end users to discover, visualise and interpret mineral co-occurrence and spatial relationships. Mineral Network Analysis (MNA) has been shown to be a dynamic and quantitative tool capable of revealing and visualizing complex patterns of abundance, diversity and distribution in large mineralogical data sets3. To facilitate the application of MNA for the interpretation of the HMMA dataset and efficient communication of the project results, we have developed a Mineral Network Analysis for Heavy Minerals (MNA4HM) web application utilising the ‘Shiny’ platform and R package. The MNA4HM application is used to reveal (1) the abundance and co-occurrences of heavy minerals, (2) their spatial distributions, and (3) their relations to first-order geological and geomorphological features. The latter include geological provinces, mineral deposits, topography and major river basins. Visualisation of the mineral network guides parsimonious yet meaningful mapping of minerals typomorphic of particular geological environments or mineral systems. The mineralogical dataset can be filtered or styled based on mineral attributes (e.g., simplified mineralogical classes) and properties (e.g., chemical composition).</div><div><br></div><div>In this talk we will demonstrate an optimised MNA4HM workflow (identification à mapping à interpretation) for exploration targeting selected critical minerals important for the transition to a lower carbon global economy. </div><div><br></div><div>The MNA4HM application is hosted at https://geoscienceaustralia.shinyapps.io/mna4hm and is available for use by the geological community and general public.</div> This Abstract was submitted and presented to the 2023 Goldschmidt Conference Lyon, France (https://conf.goldschmidt.info/goldschmidt/2023/meetingapp.cgi)

  • <div>The study utilised Geoscience Australia’s vast data collection of mineral occurrences to identify the range of historical discoveries within the Officer-Musgrave, Darling-Curnamona - Delameian and Barkly - Isa - Georgetown Deep Dive areas. A literature review shed light on exploration discovery methods, commodity grades, exploration histories and deposit types. Many critical mineral occurrences were overlooked or ignored in the past, as the commodity discovered was not of interest or value at the time, or grades were regarded as sub-economic. However, with modern methods of mining, ore treatment techniques and increased demand, reassessment could now provide new opportunities.</div>

  • The Tongo 1 borehole was drilled approximately 83 km NE of White Cliffs, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • <div>Australia's Identified Mineral Resources is an annual national assessment that takes a long-term view of Australian mineral resources likely to be available for mining. The assessment also includes evaluations of long-term trends in mineral resources, world rankings, summaries of significant exploration results and brief reviews of mining industry developments.</div>